A NASA-funded artistic rendition of Neumann’s automaton that produce automaton, the original caption of which is: "proposed demonstration of simple robot self-replication", based on the Advanced Automation for Space Missions NASA/ASEE summer study held at the University of Santa Clara in Santa Clara, California, from June 23-August 29, 1980. [15] |
Delivered: (add)Second: "Rigorous Theories of Control and Information"
Delivered: (add)Third: "Theory and Organization of Complicated Automata"
Delivered: (add)Fourth: "The Role of High and of Extremely High Complication"
Delivered: (add)Fifth Lecture: "Re-evaluation of the Problem of Complicated Automata: Problems of Hierarchy and Evolution"
Delivered: at the University of Illinois, December, 1949Neumann then seems to have been in the process of assembling all of this into a book entitled The Theory of Automata: Construction, Reproduction, Homogeneity. Both the fifth lecture and the unfinished manuscript were published as the edited 1966 book by Arthur Burks.
A modern two-dimesional computer iteration version of Neumann's cellular automaton, according to which a binary signal is passed repeatedly around the blue wire loop, using excited and quiescent ordinary transmission states, during the course of which a confluent cell duplicates the signal onto a length of red wire consisting of special transmission states; the then signal passes down this wire and constructs or so-called self-replicates a new cell at the end (i.e. a new red arrow). |
“Can one build an aggregate out of such elements in such a manner that if it is put into a reservoir, in which there float all these elements in large numbers, it will then begin to construct other aggregates, each of which will then at the end turn out to be another automaton exactly like the original ones?”These so-called floating elements, as noted by American mathematician and computer designer Arthur Burks, who would later attempt to create a two-dimensional realization of Neumann's three-dimensional thought experiment premise, were spoken about prior to the lecture, by Neumann in the summer of 1948, as consisting of eight kinds of parts: a ‘stimulus organ’, a ‘coincidence organ’, an ‘inhibitory organ’, a ‘stimuli producer’, a ‘rigid member’, a ‘fusing organ’, a ‘cutting organ’, and a ‘muscle’. [10]
“The important point about von Neumann’s automaton theory is that it requires a source of free energy (i.e. a source of energy from which work can be obtained) in order to function. We can imagine that the free energy comes from electric batteries which the automaton finds in its environment. (These are analogous to the food eaten by animals.) Alternatively we can imagine that the automaton is equipped with photocells, so that that it can use sunlight as a source of free energy, but it is impossible to imagine the automaton reproducing itself without some energy source from which work can be obtained to drive its reproductive machinery. If it could be constructed, would von Neumann’s automaton be alive? Few people would say yes. But is such a self-reproducing automaton could be constructed, it would have some of the properties which we associate with living organisms.”
A $1,450 dollar rare books copy of John Neumann’s high-sought 1966 The Theory of Self-Reproducing Automata. [8] |
An artistic rendition of the 1980 conceived Neumann automaton theory based self-replicating lunar space station, a premise about which NASA spent 11.7 million dollars investigating. [9] |