Moral symbols
A overview of the moral symbols, i.e. reactions diagrams (AB + C → BC + A), bonding crotchets ( ‘ { ’), affinity darts ( ‘ → ’), and characters (A, AB, etc.), etc., pioneered in the combined works of chemists Etienne Geoffroy (1718), William Cullen (1757), and Torbern Bergman (1775), used by German polymath Johann Goethe to formulate his 1799 theory of physical chemistry based morality quantified in terms of human chemical affinities (table), as explained in his 1809 novella Elective Affinities, wherein he outlined a unified approach to the explanation of chemical, physical, and social nature, on the premise that there is after all only one nature.
In science, moral symbols, refers to the premise that the basis of morality is to be found in the symbols of affinity chemistry, the precursor to physical chemistry, as defined as following 24 Jul 1809 statement, from the Alfred Steer (1990) translation, by German polyintellect Johann Goethe: [8]

“The moral symbols in the natural sciences—for example that of the elective affinities invented and used by the great Bergman—are more intelligent and permit themselves to be connected better with poetry, even connected with society better than any others, which are, after all, even the mathematical ones, anthropomorphic. The thing is that the former (the chemicals) belong with the emotions, the latter (mathematics) belong with the understanding.”


The moral symbols are a physical chemistry based system of guidance, outlined by Goethe in layers of coded Gestalt in his 1809 novella Elective Affinities, on how to behave and move in right or wrong directions (moral movement) according to what is known about nature of the universe; the symbols themselves being embodied in the concept of the Lewis inequality (or the force chemical affinities), which include chemical reaction operators, initial states (reactants) and final states (products) of time of changes in chemical entities (e.g. human molecules), measured state variables, and the differential equations of chemical thermodynamics, that quantify the natural process in question.

This logic was explained by German polymath Johann Goethe who commented to his friend writer-librarian Friedrich Riemer who recorded in his diary dated 24 July 1809 that Goethe told him the following: [2]

“The moral symbols of the natural sciences are the elective affinities discovered and employed by the great Bergman.”

Another translation reads as follows: [8]

“The moral symbols in the natural sciences (for example that of the elective affinities invented and used by the great Bergman) are more intelligent and permit themselves to be connected better with poetry and society.”

In this quote the italicized term "intelligent" in the original German was geistreicher, which also translates as either meaningful or witty. [9] Likewise, another less intuitive translation gives the term geistreicher as meaning spiritual in English: [10]

“The moral symbols in the natural sciences (for example that of elective affinities discovered and used by the great Bergamn [sic]) are more spiritual, and allow themselves to be combined with poetry, indeed with society, above all others.”

The end part of the quote seems to capture Goethe's mindset: his view that logic of Bergman's chemistry textbook, as embodied in the premise of the affinity reaction and natural affinity preferences that exist in all reactive entities of nature, humans included, applied absolutely with the description of operations in society.

The natural sciences mentioned here are chemistry and physics; the elective affinities refers to the force of chemical affinity, and the name Bergman refers to Swedish chemist Torbern Bergman and his 1775 chemistry textbook A Dissertation on Elective Attractions.

Correctly, to note, the elective affinity concept wasn't "discovered" or invented by Bergman, as Goethe says, but rather this was a concept slowly built up by others particularly through English physicist Isaac Newton (1718), tracing at least as far back to the circa 1250 work of German philosopher Albertus Magnus, and before that to the Greek philosopher Plato's circa 390 first law of affinity ("likes attract" and "opposites repel"), which itself was based on Empedocles' standard model of physics and his conception of philia (attractive force) and neikos (repulsive force) and his famous 450BC chemistry aphorisms, about friends mixing like wine and water and enemies separating like oil and water; a view to which Goethe pays tribute to in his novella).

Bergman's textbook, however, with its foldout 59-column 50-row affinity table (see: table) and separate appendix of 64 affinity reactions diagrams (see: diagrams), was the pinnacle of the science of affinity chemistry, a subject that would eventually fork to the two subjects of chemical thermodynamics (late 19th century) and quantum chemistry (early 20th century).

Goethe went on to extrapolated this logic further in his preliminary comments in regard to his newly forming book Elective Affinities (1809) that his “idea for the new novella was to portray social relationships and their conflicts symbolically”.

The three main symbols Goethe mentions here are firstly the elective affinities, quantified in terms of affinity tables in 1718 by French physician and chemist Étienne Geoffroy; Scottish physician and chemist William Cullen’s 1757 pioneering development of affinity reaction diagrams, employed in his chemistry lectures, using darts (to represent the affinity preference and thus change) and bonding brackets (to represent chemical attachment); and Swedish chemist Torbern Bergman’s 1775 notation scheme of using single letters, such as A, B, C, et., to represent single chemical entities, and affixed letters, e.g. AB, BC, etc., to represent attached or chemically bonded entities, along with other variables such as distinction between aqueous versus dry reactions as well as heated reactions.
chemical symbols (c1,000AD)
A circa 1,000AD listing of various elements and their symbols. [5]

The first attempts to represent chemical entities using "characters" or "symbols" was done some time in the late first century, when it was theorized that some type of "sympathy" connection existed between the astrology and the metals, thus, e.g., silver Ag, colored the same as the moon, was assigned with the chemical symbol of a crescent moon ☽, gold Au, colored the same as the sun, was assigned with the chemical symbol of the sun ☉ (or ☼), among other types of similar assignments.

English physicist Isaac Newton was the first to rank various known chemical entities in order of affinity reaction preference in his famous Query 31, his last and final query.

Starting with Newton's affinity reaction tendency rankings, the first arrangement of the main known chemical entities, depicted as characters, into a tabulated ranking of reaction preferences, otherwise known as an affinity table or table of reports was that constructed in 1718 by French physician and chemist Étienne Geoffroy, later to be known as Geoffroy's affinity table, which was based on verbal descriptions of affinity reaction preferences.

Silver nitrate copper reaction (c)
The silver nitrate (AgNO3) copper (Cu) reaction, depicted using Scottish chemist William Cullen's original affinity reaction lecture notation (left) and modern reaction notation (right). [4]
Crotchets and darts
The first drawings of chemical reactions depicted using symbols were done in the 1757 lectures of Scottish physician and chemist William Cullen. The reaction of silver nitrate with copper is depicted adjacent. To explain his affinity reaction symbol notation, Cullen states:

“The upper character is the nitrous acid and below it is silver; by the [crotchet] mark ‘ { ’ I mean them united to one another; opposite them is copper, the dart ‘ → ’ between them expresses the elective attraction. When I put a dart with the tail to one substance and the point to another, I mean that the substance to which the tail is directed unites with the one to which the point is directed more strongly than it does with the one united to it in the crotchet; then I would say that the nitrous acid attracts copper more strongly than silver to which it is connected, and it attracts iron more strongly than copper and zinc more strongly than iron.”

These were the first of the "symbols" alluded to by Goethe in his postulate that morality is explained by the symbols of the natural sciences.

Bonded union shorthand
In 1775, in semi-replacement for the cumbersome crotchet method of representing chemical bonding, Bergman introduced the simpler notation scheme of using abstract single letters, e.g. A, B, C, et., to represent single chemical entities, and affixed letters, e.g. AB, BC, etc., to represent attached or chemically bonded entities "united to one another", as Cullen says. Thus, in the years to follow chemical reactions began to be represented as such:

AB + C → BC + A

wherein the the left side depicts the reactants in their initial state, the right side the products in their final state, the reaction arrow signifying change or a reaction going to completion; the ‘AB’ attachment signifies a chemical bond (A≡B), a theory developed in the first decades of the 20th century, in the small atomic-level small molecule sense, or human chemical bond (♂≡♀ ), a theory developed in the first decade of the 21st century, in the human chemistry sense of reactions occurring between people, each with a measurable and quantifiable bond energy.

Free energies
In 1882, German physicist Hermann Helmholtz, in his "On the Thermodynamics of Chemical Processes", proved that the measure of chemical affinity A or elective affinity is the negative of free energy change ΔG:

A = -ΔG

In modern 21st century terms, in the context of human behavior, morality defined as shorthand for a system of guidance to tell how one ought to behave, the moral symbols are the Gibbs free energy change determinants of chemical reactions between people in dynamical systems, loosely quantified by the spontaneity rule that free energy decrease over time signifies a ‘natural’ direction (arrow of time), process (natural process), or reaction (spontaneous reaction or energetically-favored reaction); whereas, conversely, free energy increase over time signifies an ‘unnatural’ direction (opposite to the arrow of time, process (unnatural process), or reaction (non-spontaneous reaction or energetically unfavored reaction). This is stated mathematically as:

ΔG < 0 (natural)
ΔG > 0 (unnatural)

and is understood in changes between the difference in free energy between two states in time of human existence (initial state as compared to the final state) as can be quantified in terms of enthalpy change, entropy change, free energy coupling, and other conjugate variable pair factors.
A typical modern-day moral dilemma: when to get a divorce when young kids are involved? Statistically, 44% of all marriages will divorce at the 15-year mark. Should a pair stay married for the sake of the kids or would divorce be better off for everyone in the long run? The question of divorce, a type of debonding reaction, whether in friendships or in marriage was at the heart of Goethe’s notion of moral symbols, as was addressed through 36 chapter examples in his 1809 novella Elective Affinities.

Equilibrium reactions
The symbol notation to designate the concept of a "reversible reaction", so to speak, i.e. a set of reactions reaching the equilibrium state, the forward direction being just as energetically favored as the reverse direction in a free energy sense, was designated by the symbol ‘ \leftrightarrows \,’ by Dutch physical chemist Jacobus van't Hoff in 1884. [6] In extrapolation of this to human chemical reactions, a relationship at equilibrium, often signified as "heat death" in thermodynamic terms or a dead relationship would be quantified by the following symbol notation:

A + B ⇌ AB

and quantified by a Gibbs free energy of zero:

ΔG = 0

In the sense that the relationship is not working any more, or going any where, as it is colloquially said, the measure of Gibbs free energy release being the value of the available energy of the relationship. Here, we can conclude that in terms of "moral symbols", that each of the two relationship states (attached or separated) are equally favored and thus there is a moral ambivalence to the situation. In a situation where the relationship had progressed to a very unstable state, as quantified by the measure:

ΔG > 0

for the reaction written in the forward direction:

A + B → AB

then one would state the moral symbols advise for divorce and thus give intelligent guidance in such situations. A more advanced type of this equilibrium reaction moral symbol logic, to note, was first applied to human chemical reactions in bulk, i.e. college campus student bodies, by American astrophysicist Christopher Hirata in the 2000 article "The Physics of Relationships". [7]

Moral landscapes
In modern times science, according to American morality neuroscientist Sam Harris, science has "no official opinion" on what constitutes moral truth, i.e. right or wrong, good or evil, and human values. Although this is far from the truth, Harris does seem to capture the official ivy league opinion. In its absence, Harris outlines what he calls the "moral landscape" a hypothetical space of real and potential outcomes whose peaks correspond to the heights of potential well-being and whose valleys represent the deepest possible suffering. [3] In thermodynamic terms, this would be equivalent to free energy maps or energy landscapes, as they are sometime called.

Harris states that these moral landscapes result owing to some type of yet undefined "evolutionary pressure". Some of this type of logic of evolution based free energy landscapes was outlined in the 1990s by South African chemical physicist Adriaan de Lange.

Goethe's moral symbols theory is what is called the standard model of morality in science. Attempts at similar outline superficial verbal version or derivatives to Goethe's model include a variety of speculative views on how to manage or find a balance between energy and entropy, the two components of the quantitative aspects of Goethe's moral symbols:

A = TΔS – ΔH

This energy-entropy verbal approach method includes: German physical chemist Wilhelm Ostwald's 1912 energetic imperative, English physiologist William Bayliss's 1915 free energy imperative, American physicist Robert Lindsay's 1959 thermodynamic imperative, Egyptian-born American physicist Jack Hokikian's 2002 order-disorder morality view, or American educator Dick Hammond's 2005 entropy ethics teaching format for children, among others.

In lectures to bioengineering thermodynamics students, Goethe "moral symbols" quote is one dominant query that seems to commonly piqué the interests of students, during the question and answer period following talks on human thermodynamics.

See also
Entropy ethics
Energetic imperative
Thermodynamic imperative

1. Wiese, Benno von. (1951). Anmerkungen to Die Wahlverwandtschaften, In: Goethe’s Werke, edited by Benno von Wiese. Vol. 19. pg. 621. Hamberg: Wegener.
2. Thims, Libb. (2007). Human Chemistry (Volume Two) (moral symbols, pg. 372). Morrisville, NC: LuLu.
3. Harris, Sam. (2010). The Moral Landscape: How Science can Determine Human Values.
4. Crosland, M. P. (1959). “The use of diagrams as chemical ‘equations’ in the lecture notes of William Cullen and Joseph Black.” Annals of Science, Vol 15, Num 2, June.
5. Partington, James. (1937). A Short History of Chemistry (pg. 22). Dover, 1989.
6. (a) Nernst, Walther. (1895). Theoretical Chemistry: from the Standpoint of Avogadro’s Rule & Thermodynamics ( \leftrightarrows \,, pg. 358). MacMillan and Co.
(b) The exact publication of Van't Hoff likely being his 1884 Studies in Chemical Dynamics.
7. (a) Hirata, Christopher M. (c. 2000). “The Physics of Relationships” (section: Fun),
(b) Hirata, Christopher M. (2010). "The Physics of Relationships", Journal of Human Thermodynamics, 6(5): 62-76.
8. Steer, Alfred G. (1990). Goethe’s Elective Affinities: the Robe of Nessus (moral symbols, pg. 44). Winter.
9. Brodsky, Claudia. (2009). In the Place of Languagte (moral symbols, pg. 152). Fordham University Press.
10. Crawford, Walter. (1979). Reading Coleridge: Approaches and Applications (moral symbols, pg. 100). Cornell University Press.

TDics icon ns