The symbol W in the Boltzmann formula engraved into the Boltzmann tombstone in the 1930s. [2] |
or
and then defines the multiplicity of a macrostate to be the number of microstates that corresponds to the microstate. He uses a four ball (labeled A, B, C, D) two bowl (L, R) example, and tabulates the possible unique arrangements, to conclude that the multiplicity, or the different ways in which one can apportion the four balls to the two bowls, is 16 (1 for all balls in L bowl; 4 for three balls in L bowl; 6 for two balls in each bowl; 4 for three balls in R bowl, and 1 for four balls in R bowl). Hence, a four particle, two-container system is said to have a multiplicity of sixteen. [7] It is difficult, however, to see how the number sixteen is arrived at using one of the above expressions for W?